skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olmos, Rubyann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the recent past, heterostructures of magnetic oxide thin films have attracted a great deal of research excitement due to very interesting physical properties such as antiferromagnetic interlayer coupling, tunable exchange-bias, interfacial driven magnetic properties and high mobility electron gas across the interfaces. In this work, we report on the comprehensive magnetic properties observed from the heterostructures of (2 unit cells) La0.7Sr0.3CrO3/(8 unit cells) La0.7Sr0.3MnO3/(2 unit cells) La0.7Sr0.3CrO3, which are epitaxially deposited on SrTiO3 substrate by plasma-assisted oxide molecular beam epitaxy. Using SQUID magnetometer, the magnetic properties are studied when the magnetic field was applied both in plane and out of plane. The Curie temperature of this structure is found to be at 290 K. Most significantly, at 2 K, we observed a complete up/down shift (along magnetization axis) of hysteresis loop when the sample was cooled under a magnetic field of ± 5000 Oe in the in-plane configuration. We believe that the strong antiferromagnetic (super) exchange coupling of Mn-Cr across the two interfaces is responsible for the observed exchange bias. We will present and discuss our in-detailed experimental findings collected on this heterostructure as a function of temperature and magnetic field. 
    more » « less